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Problem 13.1: Deriving the Kronig–Penney Equations

Problem Statement:

(a) Derive equation (12.28) by taking the integral and limit of equation (12.27).

(b) Show that equation (12.29) follows.

Background:
In the Kronig–Penney model (a simple model for electrons in a periodic potential), the potential
is modeled as a series of delta functions:

V (x) =

∞∑
n=−∞

V0 δ(x− n∆) (Eq. (12.24)).

The wave functions in the regions between the delta functions are plane waves, and the matching
conditions at the discontinuities (the delta functions) provide relationships between the coefficients.
Equation (12.27) (not shown here in full) is obtained by integrating the Schrödinger equation over
an infinitesimal interval around a delta function.

Solution for (a):
Step 1. Write the time-independent Schrödinger equation with the delta potential:

− ℏ2

2m

d2ψ

dx2
+ V (x)ψ(x) = Eψ(x). (Using Eq. (12.11))

Between the delta functions, V (x) = 0 so that the solution is given by a superposition of plane
waves. In the region between two delta potentials, one can write

ψ(x) = Aeiqx +Be−iqx, with q =

√
2mE

ℏ2
.

Step 2. Integrate the Schrödinger equation from x = −ϵ to x = +ϵ around one of the delta
peaks located at x = 0. Because the delta function is zero everywhere except at x = 0, the
contribution from the potential is:∫ +ϵ

−ϵ
V0δ(x)ψ(x) dx = V0 ψ(0).
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The kinetic energy term, when integrated, gives a discontinuity in the derivative. One obtains
(after rearrangement):

ℏ2

2m

[
ψ′(0+)− ψ′(0−)

]
= V0 ψ(0). (This is the matching condition.)

Express the derivatives in terms of the plane-wave coefficients. Writing

ψ(x) =

{
Aeiqx +Be−iqx, x < 0,

A′eiqx +B′e−iqx, x > 0,

and enforcing the continuity of ψ(x) at x = 0 (so that A+B = A′ +B′) and using the above jump
condition yields (after some algebra) equation (12.28):

ℏ2

2m
iq
[
A−B −Aei(q−k)∆ +Be−i(q+k)∆

]
= V0(A+B). (12.28)

Here, the phase factors e±i(q±k)∆ arise from applying the Bloch condition (see Eq. (12.21)) on the
translation over one period ∆.

Solution for (b):
Step 3. Using the conditions obtained in (a), you can eliminate the coefficients A and B by
forming the appropriate ratio. The derivation (shown in full in the text) leads to a dispersion
relation between the crystal momentum k and the free-electron wave number q:

cos(k∆) = cos(q∆) +
mV0∆

ℏ2
sin(q∆)

q∆
. (12.29)

This equation follows when you divide both sides of the system of equations by (A+B) and isolate
the term cos(k∆). It expresses the allowed values of q (and hence the allowed energies E) in terms
of the crystal momentum k.

Problem 13.2: Expected Occupancy at the Conduction Band Edge

Problem Statement: Determine the expected occupancy of a state at the conduction band edge
for Ge, Si, and diamond at room temperature (300 K).

Background:
For electrons (which are fermions), the occupancy of a state at energy E is given by the Fermi–Dirac
distribution (Eq. (12.8)):

f(E) =
1

eβ(E−µ) + 1
with β =

1

kT
.

For an intrinsic semiconductor, the Fermi level µ (often denoted EF ) lies roughly midgap. Thus,
at the conduction band edge Ec, the occupancy is

f(Ec) =
1

eβ(Ec−EF ) + 1
.

Because the bandgap energies for Ge ( 0.67 eV), Si ( 1.11 eV) and diamond ( 5 eV) are much larger
than kT ( 0.026 eV at 300 K), Ec − EF is on the order of half the band gap.

Calculation for Each Material:
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Step 1: For Ge: Assume Ec − EF ≈ 0.67/2 ≈ 0.335 eV. Then,

f(Ec) =
1

e0.335/0.026 + 1
≈ 1

e12.88 + 1
≈ 1

3.98× 105 + 1
≈ 2.5× 10−6.

Step 2: For Si: Assume Ec − EF ≈ 1.11/2 ≈ 0.555 eV. Then,

f(Ec) =
1

e0.555/0.026 + 1
≈ 1

e21.35 + 1
≈ 1

1.9× 109 + 1
≈ 5.3× 10−10.

Step 3: For Diamond: Assume Ec − EF ≈ 5/2 ≈ 2.5 eV. Then,

f(Ec) =
1

e2.5/0.026 + 1
≈ 1

e96.15 + 1
≈ extremely small (essentially zero).

Problem 13.3: Doping Effects in Si

Problem Statement: For Si doped with 1017 As atoms/cm3:

(a) What is the equilibrium hole concentration at 300 K?

(b) How much does this move the Fermi level EF relative to its intrinsic value?

Background:
In n-type Si doped with donor atoms (As), most of the added electrons go into the conduction
band. The mass-action law gives:

np = n2i ,

where n is the electron concentration, p is the hole concentration, and ni is the intrinsic carrier
concentration (for Si, ni ∼ 1010 cm−3 at 300 K).

(a) Equilibrium Hole Concentration:

Step 1: Assume nearly all donor atoms contribute one electron, so n ≈ 1017 cm−3.

Step 2: Then, using np = n2i :

p =
n2i
n

=
(1010)2

1017
=

1020

1017
= 103 cm−3.

(b) Shift in Fermi Level:
The electron concentration is also given by the effective density of states Nc and the Fermi–Dirac
factor:

n = Nce
EF−Ec

kT .

For an intrinsic semiconductor, ni = Nce
Ei−Ec

kT , where Ei is the intrinsic Fermi level.
Taking the ratio,

n

ni
= e

EF−Ei
kT .

Assuming n = 1017 cm−3 and ni = 1010 cm−3, then

e
EF−Ei

kT =
1017

1010
= 107.
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Taking the natural logarithm gives

EF − Ei

kT
= ln(107) ≈ 16.1.

With kT ≈ 0.026 eV at 300 K,

EF − Ei ≈ 16.1× 0.026 eV ≈ 0.42 eV.

Problem 13.5: Energy Dissipation in Logic Interconnects

Problem Statement:
Consider a logic circuit whose output is connected by a wire of resistance R to a load capacitor C
(representing the gate of the next FET). The capacitor is initially discharged. When the gate is
turned on, it is charged to the supply voltage V . Assume:

(a) V = 1.8V,

(b) C = 1 fF = 1× 10−15 F.

Answer the following:

(a) How much energy is stored in the capacitor?

(b) How much energy is dissipated in the wire (assuming a sudden turn-on)?

(c) Approximately how much energy is dissipated if the supply voltage is ramped linearly from
0 to 1.8 V over a long time τ?

(d) How often must the capacitor be charged/discharged for it to draw 1 W from the power
supply?

(e) If an IC has 109 transistors, each charging and discharging this capacitance once per cycle of
a 1 GHz clock, how much power is consumed in this worst-case estimate?

(f) How many electrons are stored in the capacitor?

Solution:

(a) Energy Stored in the Capacitor: The energy stored in a capacitor is given by

Ecap =
1

2
CV 2.

For C = 1× 10−15 F and V = 1.8V:

Ecap = 1
2 × 1× 10−15 × (1.8)2 J = 0.5× 1× 10−15 × 3.24 ≈ 1.62× 10−15 J.

(b) Energy Dissipated in the Wire (Instantaneous Switching): When a capacitor is
charged suddenly through a resistor, the total energy drawn from the supply is

Etotal = CV 2.
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Half of this energy is stored in the capacitor and the other half is dissipated in the resistor. Thus,
the energy dissipated is

Edissipated = Etotal − Ecap =
1

2
CV 2 = 1.62× 10−15 J.

(c) Energy Dissipation with a Linear Ramp:
If the supply voltage is ramped linearly from 0 to 1.8 V over a long time τ , the charging process is
adiabatic. In an adiabatic (slow) charging process, the energy dissipated can be made much lower
than the sudden-step case. For a linear ramp, a detailed analysis (which uses calculus in an RC
circuit) shows that the energy dissipated is proportional to RC

τ times the energy of the sudden case.
Thus, roughly:

Ediss, ramp ≈
(
RC

τ

)
× 1

2
CV 2.

If τ ≫ RC, then the dissipated energy becomes very small.

(d) Charging Frequency for 1 W Power Consumption:
Each switching event dissipates approximately 1.62× 10−15 J. To draw 1 W (which is 1 J/s) from
the supply, the number of switching events per second N must satisfy:

N × 1.62× 10−15 J ≈ 1 J/s =⇒ N ≈ 1

1.62× 10−15
≈ 6.17× 1014 switches per second.

(e) Power Consumption in an IC with 109 Transistors:
If each transistor charges and discharges its 1 fF capacitor once per cycle on a 1 GHz clock, then
the total number of switching events per second is:

Ntotal = 109 × 109 = 1018 switches/s.

The total power consumed is approximately:

Ptotal = 1018 × 1.62× 10−15 J ≈ 1620W.

This worst-case estimate shows a very high power if every transistor switched every cycle.

(f) Number of Electrons Stored in the Capacitor:
The charge stored is

Q = CV.

For C = 1× 10−15 F and V = 1.8V:

Q = 1× 10−15 × 1.8 = 1.8× 10−15C.

The number of electrons is

Ne =
Q

e
,

where e ≈ 1.602× 10−19C. Thus,

Ne ≈
1.8× 10−15

1.602× 10−19
≈ 11240 electrons.
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